A model to evaluate Pauwels type III femoral neck fractures

Author:

Magone Kevin M1,Owen Jonas K1,Kemker Bernard P1,Bloom Oliver2,Martin Sidney1,Atkinson Patrick13

Affiliation:

1. Orthopaedic Surgery, McLaren Regional Medical Center, McLaren-Flint, Flint, MI, USA

2. Department of Biomechanical Engineering, University of Michigan, Ann Arbor, MI, USA

3. Mechanical Engineering, Kettering University, Flint, MI, USA

Abstract

While many femoral neck fractures can be reliably treated with surgical intervention, Pauwels III femoral neck fractures in the young adult population continue to be a challenging injury, and there is no consensus on optimal treatment. As such, there are past and ongoing biomechanical studies to evaluate the fixation provided by different constructs for this inherently unstable fracture. While many investigations rely on cadavers to evaluate the biomechanical performance of a construct, significant inter-subject variability can confound the analysis. Biomechanical femur analogs are being used more frequently due to more consistent mechanical properties; however, they have not been stringently evaluated for morphology or suitability for instrumentation. This study sought to determine the variability among composite femoral analogs as well as consistently create a Pauwels III injury and instrument the analogs without the need for fluoroscopic guidance. In total, 24 fourth-generation composite femoral analogs were evaluated for femoral height, neck–shaft angle, anteversion, and cortical thickness. A method was developed to simulate a Pauwels III fracture and to prepare three different constructs: an inverted triangle of cannulated screws, a sliding hip screw, and a hybrid inverted triangle with cannulated screws and a sliding hip screw. Radiographs were utilized to evaluate the variation in implant position. All but one of the morphological parameters varied by <1%. The tip-to-apex distance for all sliding hip screw hardware was 18.8 ± 3.3 mm, and all relevant cannulated screw distances were within 5 mm of the adjacent cortex. All screws were parallel, on average, within 1.5° on anterior–posterior and lateral films. Fourth-generation composite femora were found to be morphologically consistent, and it is possible to consistently instrument the analogs without the use of fluoroscopy. This analog and hardware implantation model could serve as a screening model for new fracture repair constructs without the need for cadaveric tissues or radiologic technology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3