Affiliation:
1. Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
Abstract
In developing countries, prosthetic workshops are limited, difficult to reach, or even non-existent. Especially, fabrication of active, multi-articulated, and personalized hand prosthetic devices is often seen as a time-consuming and demanding process. An active prosthetic hand made through the fused deposition modelling technology and fully assembled right after the end of the 3D printing process will increase accessibility of prosthetic devices by reducing or bypassing the current manufacturing and post-processing steps. In this study, an approach for producing active hand prosthesis that could be fabricated fully assembled by fused deposition modelling technology is developed. By presenting a successful case of non-assembly 3D printing, this article defines a list of design considerations that should be followed in order to achieve fully functional non-assembly devices. Ten design considerations for additive manufacturing of non-assembly mechanisms have been proposed and a design case has been successfully addressed resulting in a fully functional prosthetic hand. The hand prosthesis can be 3D printed with an inexpensive fused deposition modelling machine and is capable of performing different types of grasping. The activation force required to start a pinch grasp, the energy required for closing, and the overall mass are significantly lower than body-powered commercial prosthetic hands. The results suggest that this non-assembly design may be a good alternative for amputees in developing countries.
Subject
Mechanical Engineering,General Medicine
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献