Semi-supervised approach to identify steps, shoes, and gender of older adults under semi-naturalistic conditions using a waist-worn inertial sensor

Author:

Pulido Herrera Edith1ORCID,Ruiz Olaya Andrés F2,Sierra Bueno Daniel A3

Affiliation:

1. Bioengineering Program, Universidad El Bosque, Bogotá, Colombia

2. Faculty of Mechanical, Electronics and Biomedical Engineering, Universidad Antonio Nariño, Bogotá, Colombia

3. Electrical, Electronics and Telecommunication Engineering School, Universidad Industrial de Santander, Bucaramanga, Colombia

Abstract

An emerging source of information to recognize individuals’ characteristics are the walking pattern-related parameters. The elderly can be one of the populations that can benefit most from recognition-based applications, which may help to increase their possibilities of living independently at home. Approaches have been mostly focused on gait events’ identification or assessment; nonetheless, such information can also be used to obtain seniors’ characteristics that depend on physiological or environmental factors. These factors can be useful to provide a customized assistance based on contextual information. In this paper, we propose a method focused on seniors, to detect steps, and to recognize gender and type of shoes by using only the initial foot contact (IC) data obtained from inertial sensors during semi-controlled walking. Data were collected from 20 older adults who walked at self-speed in a natural environment. The method consists of first clustering the IC using k-means; then, a trained recurrent neural network recognizes gender, type of shoes, and the step phases (IC and other phases); to finally conduct step detection (SD) using a ruled-based method. The method recognizes gender and the type of shoes with an accuracy of 93% and 83.07%, respectively, whereas there were not misrecognitions of the step phases. SD achieved a mean absolute percentage error equal to [Formula: see text]. The good results show that the method is appropriate for users’ characteristics recognition applications without depending on assumptions based on individualities. Likewise, the method can be useful to monitor physical activity or systems aimed to keep safe older adults.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3