Characterization of a pressure measuring system for the evaluation of medical devices

Author:

Bonnaire Rébecca12,Verhaeghe Marion3,Molimard Jérôme1,Calmels Paul4,Convert Reynald2

Affiliation:

1. LGF, UMR 5307, CNRS, École Nationale Supérieure des Mines, CIS-EMSE, Saint-Etienne, France

2. Thuasne, Levallois-Perret, France

3. Université de Technologie de Compiègne, Compiègne, France

4. Laboratoire de Physiologie de l’Exercice, Université de Lyon, Saint-Etienne, France

Abstract

The purpose of this study is to evaluate the possible use of four “FSA” thin and flexible resistive pressure mapping systems, designed by Vista Medical (Winnipeg, Manitoba, Canada), for the measurement of interface pressure exerted by lumbar belts onto the trunk. These sensors were originally designed for the measurement of low pressure applied by medical devices on the skin. Two types of tests were performed: standard metrology tests such as linearity, hysteresis, repeatability, reproducibility and drift, and specific tests for this application such as curvature, surface condition and mapping system superposition. The linear regression coefficient is between 0.86 and 0.98; hysteresis is between 6.29% and 9.41%. Measurements are repeatable. The location, time and operator, measurement surface condition and mapping system superposition have a statistically significant influence on the results. A stable measure is verified over the period defined in the calibration procedure, but unacceptable drift is observed afterward. The measurement stays suitable on a curved surface for an applied pressure above 50 mmHg. To conclude, the sensor has acceptable linearity, hysteresis and repeatability. Calibration must be adapted to avoid drift. Moreover, when comparing different measurements with this sensor, the location, the time, the operator and the measurement surface condition should not change; the mapping system must not be superimposed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3