A validated lower extremity model to investigate the effect of stabilizing knee components in pedestrian collisions

Author:

Grindle Daniel1ORCID,Aira Jazmine2,Gayzik Francis Scott2,Untaroiu Costin1ORCID

Affiliation:

1. Center for Injury Biomechanics, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA

2. School of Medicine, Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA

Abstract

Lower extremity injuries account for over 50% of pedestrian orthopedic injuries in car-to-pedestrian collisions. Pedestrian finite element models are useful tools for studying pedestrian safety, but current models use simplified knee models that exclude potentially important stabilizing knee components. The effect of these stabilizing components in pedestrian impacts is currently unknown. The goal of this study was to develop a detailed lower-extremity model to investigate the effect of these stabilizing components on pedestrian biomechanics. In this study the Global Human Body Model Consortium male 50th percentile pedestrian model lower body was updated to include various stabilizing knee components, enhance geometric anatomical accuracy of previously modeled soft tissue structures, and update hard and soft tissue material models. The original and updated models were compared across 13 validation tests and the updated model reported significantly ( p = 0.01) larger CORA scores (0.73 ± 0.15) than the original model (0.56 ± 0.20). To investigate the effect of the new stabilizing knee components the updated model had its stabilizing components severed. The severed and intact models were impacted by the EuroNCAP SUV and family car models at 30 and 40 km/h. The intact and severed models reported nearly identical head impact times, wrap around distances, and lower-extremity injury outcomes in all four impacts, but the stabilizing components reduced the varus knee angle of the secondarily impacted leg by up to 4.9°. The stabilizing components may prevent secondary impacted leg injuries in lower intensity impacts but overall had little effect on pedestrian biomechanical outcomes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of driver injury risks in car-to-end terminal crashes using a human finite element model;Computer Methods in Biomechanics and Biomedical Engineering;2024-08-09

2. A numerical investigation of e-scooter-to-vehicle traffic accidents;Computer Methods in Biomechanics and Biomedical Engineering;2024-05-02

3. Head Injuries Induced by Tennis Ball Impacts: A Computational Study;Journal of Applied Mechanics;2023-11-03

4. Effect of Tissue Erosion Modeling Techniques on Pedestrian Impact Kinematics;STAPP CAR CRASH JOURNAL 2022 Volume 66;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3