Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells

Author:

Domingos Marco1,Gloria Antonio2,Coelho Jorge3,Bartolo Paulo1,Ciurana Joaquim4

Affiliation:

1. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK

2. Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy

3. CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal

4. Universitat de Girona, Girona, Spain

Abstract

Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycaprolactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite (nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 µm and to assess the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an increase in polycaprolactone compressive modulus ( E) from 105.5 ± 11.2 to 138.8 ± 12.9 MPa (PCL_nHA) and 217.2 ± 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or PCL_mHA structures.

Funder

SKELGEN project – Establishment of a cross continent consortium for enhancing regenerative medicine in skeletal tissues

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3