Investigation of the effect of the angle between femoral and prosthesis mechanical axes on bone remodeling of femur in total knee arthroplasty

Author:

Hadizadeh Hasan1,Hadizadeh Hossein1,Ganjiani Mehdi1ORCID,karimpour Morad1,Hosseinpour Abolfazl2

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. Department of Mechanical Engineering, University of North Carolina, Charlotte, NC, USA

Abstract

The bone remodeling is the process in which the bone adapts its structure to the variation of environmental loads. The joint might be broken or damaged as a result of aging or an accident. To remedy this situation, Total Knee Arthroplasty (TKA) and prosthesis implantation is recommended. The main goal of this research is to investigate the effects of femur implanting angle on the bone remodeling process after TKA in the Coronal, Sagittal and horizontal planes over seven years. First, the 3D CAD model from CT images is created then the bone behavior is simulated using a model with a USDFLD subroutine. The results show that as the implant rotates in one direction, the stress and density distribution increases in the same direction whereas the load and consequently the bone density decrease substantially in the opposite direction. Consequently, the bone density might even decrease 77 and 31 percent in the coronal and sagittal plane respectively, so in the total knee arthroplasty, the mechanical axes of prosthesis and femur should be parallel. The active bone which occurs as a result of mechanical axes of prosthesis and femur parallelism and consequently uniform load distribution, can protect the implant from prosthesis loosening and fracture.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of the angle between tibial and prosthesis mechanical axes on tibial bone remodeling in total knee arthroplasty;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3