A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications

Author:

John Pauline1ORCID,Antony Irene Rose2,Whenish Ruban3ORCID,Jinoop Arackal Narayanan4ORCID

Affiliation:

1. Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, TN, India

2. School of Bio-sciences and Technology, Vellore Institute of Technology, Vellore, TN, India

3. Center for Biomaterials, Cellular and molecular Theranostics, Vellore Institute of Technology, Vellore, TN, India

4. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada

Abstract

Human body comprises of different internal and external biological components. Human organs tend to fail due to continuous or sudden stress which leads to deterioration, failure, and dislocation. The choice of selection and fabrication of materials for tissue engineering play a key role in terms of suitability, sensitivity, and functioning with other organs as a replacement for failed organs. The progressive improvement of the additive manufacturing (AM) approach in healthcare made it possible to print multi-material and customized complex/intricate geometries in a layer-by-layer fashion. The customized or patient-specific implant fabrication can be easily produced with a high success rate due to the development of AM technologies with tailorable properties. The structural behavior of 3D printed biomaterials is a crucial factor in tissue engineering as they affect the functionality of the implants. Various techniques have been developed in appraising the important features and the effects of the subsequent design of the biomaterial implants. The behavior of the AM built biomaterial implants can be understood visually by an imaging system with a high spatial and spectral resolution. This review intends to present an overview of various biomaterials used in implants, followed by a detailed description of optical 3D printing procedures and evaluation of the performance of 3D printed biomaterials using optical characterization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Futuristic Biomaterials for 3D Printed Healthcare Devices;Digital Design and Manufacturing of Medical Devices and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3