Characterising the compressive anisotropic properties of analogue bone using optical strain measurement

Author:

Marter Alex D1,Dickinson Alexander S1ORCID,Pierron Fabrice2,Fong Yin Ki (Kiki)1,Browne Martin1

Affiliation:

1. Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK

2. Engineering Materials Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK

Abstract

The validity of conclusions drawn from pre-clinical tests on orthopaedic devices depends upon accurate characterisation of the support materials: frequently, polymer foam analogues. These materials often display anisotropic mechanical behaviour, which may considerably influence computational modelling predictions and interpretation of experiments. Therefore, this study sought to characterise the anisotropic mechanical properties of a range of commonly used analogue bone materials, using non-contact multi-point optical extensometry method to account for the effects of machine compliance and uneven loading. Testing was conducted on commercially available ‘cellular’, ‘solid’ and ‘open-cell’ Sawbone blocks with a range of densities. Solid foams behaved largely isotropically. However, across the available density range of cellular foams, the average Young’s modulus was 23%–31% lower (p < 0.005) perpendicular to the foaming direction than parallel to it, indicating elongation of cells with foaming. The average Young’s modulus of open-celled foams was 25%–59% higher (p < 0.05) perpendicular to the foaming direction than parallel to it. This is thought to result from solid planes of material that were observed perpendicular to the foaming direction, stiffening the bulk material. The presented data represent a reference to help researchers design, model and interpret tests using these materials.

Funder

depuy synthes spine

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3