Experimental testing of fracture fixation plates: A review

Author:

Zhang Shiling1ORCID,Patel Dharmesh2,Brady Mark2,Gambill Sherri2,Theivendran Kanthan3ORCID,Deshmukh Subodh3,Swadener John1ORCID,Junaid Sarah1,Leslie Laura Jane1ORCID

Affiliation:

1. Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK

2. Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK

3. Sandwell and West Birmingham Hospital NHS Trust, Birmingham, UK

Abstract

Metal and its alloys have been predominantly used in fracture fixation for centuries, but new materials such as composites and polymers have begun to see clinical use for fracture fixation during the past couple of decades. Along with the emerging of new materials, tribological issues, especially debris, have become a growing concern for fracture fixation plates. This article for the first time systematically reviews the most recent biomechanical research, with a focus on experimental testing, of those plates within ScienceDirect and PubMed databases. Based on the search criteria, a total of 5449 papers were retrieved, which were then further filtered to exclude nonrelevant, duplicate or non-accessible full article papers. In the end, a total of 83 papers were reviewed. In experimental testing plates, screws and simulated bones or cadaver bones are employed to build a fixation construct in order to test the strength and stability of different plate and screw configurations. The test set-up conditions and conclusions are well documented and summarised here, including fracture gap size, types of bones deployed, as well as the applied load, test speed and test ending criteria. However, research on long term plate usage was very limited. It is also discovered that there is very limited experimental research around the tribological behaviour particularly on the debris’ generation, collection and characterisation. In addition, there is no identified standard studying debris of fracture fixation plate. Therefore, the authors suggested the generation of a suite of tribological testing standards on fracture fixation plate and screws in the aim to answer key questions around the debris from fracture fixation plate of new materials or new design and ultimately to provide an insight on how to reduce the risks of debris-related osteolysis, inflammation and aseptic loosening.

Funder

Innovate UK

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference113 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomechanical Basis of Bone Fracture and Fracture Osteosynthesis in Small Animals;Biomechanical Insights into Osteoporosis;2024-01-10

2. Advancements and prospects of polymer-based hybrid composites for bone plate applications;Polymer-Plastics Technology and Materials;2023-11

3. The Impact of Geometry on the Mechanical Stability of Plates for Internal Bone Fixation;Advances in Science and Technology Research Journal;2023-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3