Comparison of depth cameras for three-dimensional reconstruction in medicine

Author:

Chiu Chuang-Yuan1ORCID,Thelwell Michael1,Senior Terry1,Choppin Simon1ORCID,Hart John1,Wheat Jon2

Affiliation:

1. Centre for Sports Engineering Research, Sheffield Hallam University, Sheffield, UK

2. Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK

Abstract

KinectFusion is a typical three-dimensional reconstruction technique which enables generation of individual three-dimensional human models from consumer depth cameras for understanding body shapes. The aim of this study was to compare three-dimensional reconstruction results obtained using KinectFusion from data collected with two different types of depth camera (time-of-flight and stereoscopic cameras) and compare these results with those of a commercial three-dimensional scanning system to determine which type of depth camera gives improved reconstruction. Torso mannequins and machined aluminium cylinders were used as the test objects for this study. Two depth cameras, Microsoft Kinect V2 and Intel Realsense D435, were selected as the representatives of time-of-flight and stereoscopic cameras, respectively, to capture scan data for the reconstruction of three-dimensional point clouds by KinectFusion techniques. The results showed that both time-of-flight and stereoscopic cameras, using the developed rotating camera rig, provided repeatable body scanning data with minimal operator-induced error. However, the time-of-flight camera generated more accurate three-dimensional point clouds than the stereoscopic sensor. Thus, this suggests that applications requiring the generation of accurate three-dimensional human models by KinectFusion techniques should consider using a time-of-flight camera, such as the Microsoft Kinect V2, as the image capturing sensor.

Funder

Centre for Sports Engineering Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3