Development and validation of intraoral periapical radiography-based machine learning model for periodontal defect diagnosis

Author:

Karacaoglu Fatma1ORCID,Kolsuz Mehmet Eray2,Bagis Nilsun1,Evli Cengiz2,Orhan Kaan23

Affiliation:

1. Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey

2. Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey

3. Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey

Abstract

Radiographic determination of the bone level is useful in the diagnosis and determination of the severity of the periodontal disease. Various two- and three-dimensional imaging modalities offer choices for imaging pathologic processes that affect the periodontium. In recent years, innovative computer techniques, especially artificial intelligence (AI), have begun to be used in many areas of dentistry and are helping increase treatment and diagnostic performance. This study was aimed at developing a machine-learning (ML) model and assessing the extent to which it was capable of classifying periodontal defects on 2D periapical images. Eighty-seven periapical images were examined as part of this research. The existence or absence of periodontal defects in the aforementioned images were evaluated by a human observer. The evaluations were subsequently repeated using a radiomics platform. A comparison was made of all data acquired through human observation and ML techniques by SVM analysis. According to the study findings the ability of human observers and the ML model to detect periodontal defects was significantly different in comparison to the gold standard. However, ML and human observers performed similarly for the detection of periodontal defects without a significant difference. This study reveals that the prediction of periodontal defects can be achieved by combining particular radiomic features with image variables. The proposed machine leaning model can be utilized for supporting clinical practitioners and eventually substitute evaluations conducted by human observers while enhancing future levels of performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3