Biomechanical comparison of screw-based zones of a spatial subchondral support plate for proximal humerus fractures

Author:

Jabran Ali1ORCID,Peach Chris12,Zou Zhenmin1,Ren Lei1

Affiliation:

1. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK

2. Department of Shoulder and Elbow Surgery, University Hospital of South Manchester, Manchester, UK

Abstract

Stabilisation of proximal humerus fractures remains a surgical challenge. Spatial subchondral support (S3) plate promises to overcome common complications associated with conventional proximal humerus plates. This study compared the biomechanical performance of S3 plate with a fixed-angle hybrid blade (Equinoxe Fx) plate and a conventional fixed-angle locking plate (PHILOS). The effects of removal of different S3 plate screws on the humeral stability were also investigated. A total of 20 synthetic left humeri were osteotomised transversely at the surgical neck to simulate a two-part fracture and were each treated with an S3 plate. Head screws were divided into three zones based on their distance from the fracture site. Specimens were divided into four equal groups where one group acted as a control with all screws and three groups had one of the screw zones missing. With humeral head fixed, humeral shaft was first displaced 5 mm in extension, flexion, valgus and varus direction (elastic testing) and then until 30 mm varus displacement (plastic testing). Load–displacement data were recorded to determine construct stiffness in elastic tests and assess specimens’ varus stability under plastic testing. Removal of the screw nearest to the fracture site led to a 20.71% drop in mean elastic varus bending stiffness. Removal of the two inferomedial screw above it resulted in a larger drop. The proximal screw pair had the largest contribution to extension and flexion bending stiffness. Varus stiffness of S3 plate constructs was higher than PHILOS and Fx plate constructs. Stability of humeri treated with S3 plate depends on screws’ number, orientation and location. Varus stiffness of S3 plate construct (10.54 N/mm) was higher than that of PHILOS (6.61 N/mm) and Fx (7.59 N/mm) plate constructs. We attribute this to S3 plates’ thicker cross section, the 135° inclination of its screws with respect to the humeral shaft and the availability of pegs for subchondral support.

Funder

Engineering and Physical Sciences Research Council

depuy synthes spine

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3