Effect of orthopedic implants on canine long bone compression stiffness: a combined experimental and computational approach

Author:

Laurent Cédric P1ORCID,Böhme Béatrice2,Verwaerde Jolanthe3,Papeleux Luc4,Ponthot Jean-Philippe4,Balligand Marc2

Affiliation:

1. CNRS, LEM3, UMR 7239, Université de Lorraine, Metz, France

2. Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium

3. CNRS, LEMTA, UMR 7563, Université de Lorraine, Vandoeuvre-lès-Nancy, France

4. Department of Aerospace & Mechanical Engineering, University of Liège, Liège, Belgium

Abstract

Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone–implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes®) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3