A novel bi-modal extended Huber loss function based refined mask RCNN approach for automatic multi instance detection and localization of breast cancer

Author:

Kumar Pradeep1,Kumar Abhinav1ORCID,Srivastava Subodh1,Padma Sai Yarlagadda2

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India

2. Department of Electronics and Communication Engineering, VNR VJIET, Hyderabad, Telangana, India

Abstract

Breast cancer is an extremely aggressive cancer in women. Its abnormalities can be observed in the form of masses, calcification and lumps. In order to reduce the mortality rate of women its detection is needed at an early stage. The present paper proposes a novel bi-modal extended Huber loss function based refined mask regional convolutional neural network for automatic multi-instance detection and localization of breast cancer. To refine and increase the efficacy of the proposed method three changes are casted. First, a pre-processing step is performed for mammogram and ultrasound breast images. Second, the features of the region proposal network are separately mapped for accurate region of interest. Third, to reduce overfitting and fast convergence, an extended Huber loss function is used at the place of Smooth L1( x) in boundary loss. To extend the functionality of Huber loss, the delta parameter is automated by the aid of median absolute deviation with grid search algorithm. It provides the best optimum value of delta instead of user-based value. The proposed method is compared with pre-existing methods in terms of accuracy, true positive rate, true negative rate, precision, F-score, balanced classification rate, Youden’s index, Jaccard Index and dice coefficient on CBIS-DDSM and ultrasound database. The experimental result shows that the proposed method is a better suited approach for multi-instance detection, localization and classification of breast cancer. It can be used as a diagnostic medium that helps in clinical purposes and leads to a precise diagnosis of breast cancer abnormalities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3