Affiliation:
1. Department of Electronics and Communication Engineering, St. Xavier’s Catholic College of Engineering, Nagercoil, India
2. Department of Electronics and Communication Engineering, Government College of Engineering, Tirunelveli, Tirunelveli, India
Abstract
The problem of classifying individual finger movements of one hand is focused in this article. The input electromyography signal is processed and eight time-domain features are extracted for classifying hand gestures. The classified finger movements are thumb, middle, index, little, ring, hand close, thumb index, thumb ring, thumb little and thumb middle and the hand grasps are palmar class, spherical class, hook class, cylindrical class, tip class and lateral class. Four state-of-the-art classifiers namely feed forward artificial neural network, cascaded feed forward artificial neural network, deep learning neural network and support vector machine are selected for this work to classify the finger movements and hand grasps using the extracted time-domain features. The experimental results show that the artificial neural network classifier is stabilized at 6 epochs for finger movement dataset and at 4 epochs for hand grasps dataset with low mean square error. However, the support vector machine classifier attains the maximum accuracy of 97.3077% for finger movement dataset and 98.875% for hand grasp dataset which is significantly greater than feed forward artificial neural network, cascaded feed forward artificial neural network and deep learning neural network classifiers.
Subject
Mechanical Engineering,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献