A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling

Author:

Chanda Souptick1ORCID,Mukherjee Kaushik2,Gupta Sanjay3ORCID,Pratihar Dilip Kumar3ORCID

Affiliation:

1. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India

2. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India

3. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abstract

The stem–bone interface of cementless total hip arthroplasty undergoes an adaptive process of bone ingrowth until the two parts become osseointegrated. Another important phenomenon associated with aseptic loosening of hip stem is stress-shielding induced adverse bone remodelling. The objective of this study was to preclinically assess the relative performances of two distinct designs of hip stems by addressing the combined effect of bone remodelling and osseointegration, based on certain rule-based criteria obtained from the literature. Premised upon non-linear finite element analyses of patient-specific implanted femur models, the study attempts to ascertain in silico outcome of the hip stem designs based on an evolutionary interfacial condition, and to further comment on the efficacy of the rule-based technique on the prediction of peri-prosthetic osseointegration. One of the two hip stem models was a trade-off design obtained from an earlier shape optimization study, and the other was based on TriLock stem (DePuy). Both designs predicted similar long-term osseointegration (∼89% surface), although trade-off stem predicted higher post-operative osseointegration. Proximal bone resorption was found higher for TriLock (by ∼110%) as compared to trade-off model. The rule-based technique predicted clinically coherent osseointegration around both stems and appears to be an alternative to expensive mechanobiology-based schemes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3