Toward the definition of a new worst-case paradigm for the preclinical evaluation of posterior spine stabilization devices

Author:

La Barbera Luigi12,Villa Tomaso12

Affiliation:

1. Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy

2. IRCCS Galeazzi Orthopedic Institute, Milan, Italy

Abstract

Mechanical reliability tests on posterior spine stabilization devices are based on standard F1717 by the American Society for Testing and Materials, which describes how to assemble the implant with vertebrae-like test blocks in a corpectomy model. A recent study proposed to revise the standard to describe the anatomical worst-case scenario, instead of the average one currently implemented, and introduce the unsupported screw length as a mechanical parameter. This article investigates the implications of such revisions on the endurance properties of an implant already on the market. Experimental fatigue tests demonstrate that the revision of F1717 standard leads to a reduction of 3.2 million cycles in the fatigue strength of the tested implant: this amount is comparable to the run-out number of cycles (5 million cycles) currently recommended. The numerical analysis, validated with static tests and strain gauges, supports the experimental findings and demonstrates that the stress on the implant may increase upon revision up to a 50% on the screw (most recurrent failure mode), with the unsupported screw length contributing alone up to 40%. The revision of ASTM F1717 standard would guarantee higher safety for the implant to test, potentially covering for a wider population of patients.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3