Regional and age-dependent residual strains, curvature, and dimensions of the human ureter

Author:

Petsepe Despoina C1,Kourkoulis Stavros K1,Papadodima Stavroula A2,Sokolis Dimitrios P3

Affiliation:

1. Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece

2. Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece

3. Laboratory of Biomechanics, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece

Abstract

The ureters are retroperitoneal structures controlling urine transport from the kidneys to the bladder. Because of the relative scarcity of data on the biomechanical properties of human ureter and the established importance of knowing these properties for understanding its physiology, we initiated biomechanical studies in cadaveric tissue. Herein, we report definite zero-stress/no-load geometrical characterization at 15 regions along the ureter of human cadavers aged 23–82 years, estimating the opening angle, circumferential residual strains, axial curvature, and dimensional parameters. Opening angle decreased along the proximal 25% of ureter, increased and reached a maximum near the mid-ureter, and then gradually decreased toward the vesicoureteral junction (young: p < 0.05; middle-aged: p < 0.05; old: p > 0.05; males: p < 0.05; females: p < 0.05). Similar were the regional distributions of residual strain at the interface between epithelium–lamina propria and muscle and of internal but not external residual strain. Wall thickness increased steadily with aging ( p < 0.05 at few regions), while ureteral circumference did not ( p > 0.05 at most regions) and opening angle decreased ( p < 0.05 at several regions). Consistent with Fung’s stress-growth law, the muscle layer thickened with age unlike the epithelium–lamina propria that thinned ( p < 0.05 at most regions for both thicknesses). Moderate-to-strong direct correlations of residual strain difference (= external – internal) with opening angle, wall thickness, and curvature were found in most ureters. The presented data will provide insight into the biomechanical response of ureter under zero/low-stress conditions and the relationship between ureteral remodeling and aging. Importantly, they may also be used to inform finite element models and computational studies simulating the ureter.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3