Numerical investigation of the hydrodynamic parameters of blood flow through stenotic descending aorta

Author:

Pasha Zanous Sina1,Shafaghat Rouzbeh1,Esmaili Qadir2

Affiliation:

1. Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

2. Department of Mechanical Engineering, Ayatollah Amoli branch, Islamic Azad University, Amol, Iran

Abstract

In this study, the blood flow passing through a three-dimensional geometrically realistic stenosis is investigated both experimentally and numerically. Although the blood flow in stenotic arteries has been extensively studied in the past few decades, not much work has been focused on irregularity of stenosis. Thus, a model of an irregular stenotic descending aorta is used in this work. Due to the irregularity of stenosis model, the governing differential equations for continuity and momentum are solved numerically using finite-volume/finite-difference techniques in the generalized body-fitted coordinates. In order to verify the numerical results, the experimental measured pressure drops are compared with the numerical result. In addition, an improved method for nearly orthogonal grid generation is presented in numerical study. The grid generating system is based on the solution of a set of partial differential equations with finite difference discretization. Numerical calculations are performed to examine the effect of 55% (ratio between cross-sectional area at upstream and stenosis) irregular stenosis on the hemodynamic characteristics such as flow separation zone, wall shear stress and pressure drop. The maximum calculated wall shear stress is related to the maximum velocity gradient due to minimum cross-sectional area at the neck of stenosis. In addition, the pressure is shown as an important characteristic that is effecting on the resistance against the flow in the artery. Based on our results, the 55% irregular constriction is considered critical unlike the studies that have believed the reduction, which is greater than 75% become significant.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of wall pressure fluctuations downstream of concentric and eccentric blunt stenosis models;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2019-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3