Structural and hemodynamic properties of murine pulmonary arterial networks under hypoxia-induced pulmonary hypertension

Author:

Chambers Megan J1,Colebank Mitchel J1ORCID,Qureshi M Umar12,Clipp Rachel2,Olufsen Mette S1ORCID

Affiliation:

1. Department of Mathematics, North Carolina State University, Raleigh, NC, USA

2. Kitware, Inc., Carrboro, NC, USA

Abstract

Detection and monitoring of patients with pulmonary hypertension, defined as a mean blood pressure in the main pulmonary artery above 25 mmHg, requires a combination of imaging and hemodynamic measurements. This study demonstrates how to combine imaging data from microcomputed tomography images with hemodynamic pressure and flow waveforms from control and hypertensive mice. Specific attention is devoted to developing a tool that processes computed tomography images, generating subject-specific arterial networks in which one-dimensional fluid dynamics modeling is used to predict blood pressure and flow. Each arterial network is modeled as a directed graph representing vessels along the principal pathway to ensure perfusion of all lobes. The one-dimensional model couples these networks with structured tree boundary conditions representing the small arteries and arterioles. Fluid dynamics equations are solved in this network and compared to measurements of pressure in the main pulmonary artery. Analysis of microcomputed tomography images reveals that the branching ratio is the same in the control and hypertensive animals, but that the vessel length-to-radius ratio is significantly lower in the hypertensive animals. Fluid dynamics predictions show that in addition to changed network geometry, vessel stiffness is higher in the hypertensive animal models than in the control models.

Funder

American Heart Association

Division of Mathematical Sciences

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3