Time-varying modeling and intelligent compensation control of singletendon-sheath structure of surgical robot

Author:

Liang Ke1,Tang Yu1,Jiang Xianbao1,Wang Shuo1,Li Jing1,Wang Yupeng1,Pan Mingzhang1ORCID

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning, China

Abstract

The inaccurate force and position control of tendon sheath system (TSS) due to nonlinear friction during surgery seriously hinders its development in the field of precision surgical robots. To this end, this paper proposes a time-varying bending angle estimation method under the state of sensorless offline identification combined with robot kinematics by analyzing the friction of the TSS and the deformation of the robot during the movement, and establishes a force and position transfer model with time-varying path trajectory (SJM model). The model uses B-spline curve to fit tendon-sheath trajectory. In order to further improve the control accuracy of force and position, a new intelligent feedforward control strategy that integrates the SJM model and a neural network algorithm is proposed. In order to gain an in-depth understanding of the transmission process of force and position and to demonstrate the validity of the SJM model, an experimental platform for the TSS was built. A feedforward control system under the MATLAB environment was built with the aim of verifying the accuracy of the intelligent feedforward control strategy. The system innovatively combines the SJM model with BP and RBF neural networks, respectively. The experimental results showed that the correlation coefficients (R2) of force and position transfer are above 99.10% and 99.48%, respectively. Ultimately, we compared the intelligent feedforward and intelligent control strategy under a single neural network, and observed that the intelligent feedforward control strategy has a better effect.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3