Comparison of IMU set-ups for the estimation of gait spatio-temporal parameters in an elderly population

Author:

Digo Elisa12ORCID,Panero Elisa1,Agostini Valentina23ORCID,Gastaldi Laura12

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy

2. PoliToBIOMedLab of Politecnico di Torino, Turin, Italy

3. Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy

Abstract

The increasing average age emphasizes the importance of gait analysis in elderly populations. Inertial Measurement Units (IMUs) represent a suitable wearable technology for the characterization of gait by estimating spatio-temporal parameters (STPs). However, the location of inertial sensors on the human body and the associated algorithms for the estimation of gait STPs play a fundamental role and are still open challenges. Accordingly, the aim of this work was to compare three IMUs set-ups (trunk, shanks, and ankles) and correspondent algorithms to a gold standard optoelectronic system for the estimation of gait STPs in a healthy elderly population. In total, 14 healthy elderly subjects walked barefoot at three different speeds. Gait parameters were assessed for each IMUs set-up and compared to those estimated with the gold standard. A statistical analysis based on Pearson correlation, Root Mean Square Error and Bland Altman plots was conducted to evaluate the accuracy of IMUs. Even though all tested set-ups produced accurate results, the IMU on the trunk performed better in terms of correlation ( R ≥ 0.8), RMSE (0.01–0.06 s for temporal parameters, 0.03–0.04 for the limp index), and level of agreement (−0.01 s ≤ mean error ≤ 0.01 s, −0.02 s ≤ standard deviation error ≤ 0.02 s), also allowing simpler preparation of subjects and minor encumbrance during gait. From the promising results, a similar experiment might be conducted in pathological populations in the attempt to verify the accuracy of IMUs set-ups and algorithms also in non-physiological patterns.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3