Role of Artificial Intelligence and Machine Learning in the prediction of the pain: A scoping systematic review

Author:

Sankaran Ravi1,Kumar Anand2,Parasuram Harilal2ORCID

Affiliation:

1. Department of Physical Medicine and Rehabilitation, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India

2. Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India

Abstract

Artificial Intelligence in healthcare is growing quickly in diagnostics and treatment management. Despite the quantity and variety of studies its role in clinical care is not clear. To identify the evidence gaps and characteristics of the Artificial Intelligence and Machine Learning techniques in predicting/diagnosing the pain? Pubmed/Embase were searched from the inception to October 2021 for articles without any language restrictions specifically addressing the following: the accuracy of AI in pain considering Brain Imaging, Patient-reported measures, and Electrophysiology, the ability of AI to differentiate stratify severity/types of pain, the ability of AI to predict pain and lastly the most accurate AI technique for given inputs. All the included studies were on humans. Eight hundred forty abstracts were reviewed, and 23 articles were finally included. Identified records were independently screened and relevant data was extracted. We performed conceptual synthesis by grouping the studies using available concepts of AL/ML techniques in diagnosing pain. Then we summarized the number of features/physiological measurements. Structured tabulation synthesis was used to show patterns predictions along with a narrative commentary. A total of 23 articles, published between 2015 and 2020 from 12 countries were included. Most studies were experimental in design. The most common design was cross sectional. Chronic or acute pains were predicted more often. Compared to control, the pain prediction was in the range of 57%–96% by AI techniques. Support Vector Machine and deep learning showed higher accuracy for classifying pain. From this study, it can be inferred that AI/ML can be used to differentiate healthy controls from patients. It can also facilitate categorizing them into new and different clinical subgroups. Lastly, it can predict future pain. The limitations are with respect to studies done after the search period. AL/ ML has a supportive role in pain diagnostics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3