Novel bone cement based on calcium phosphate composited CNT curcumin with improved strength and antitumor properties

Author:

Zhao Wei1,Zhang Huiming1,Ma Jigang1,Li Yanjie1,Liu Zheng1,Zhou Shujing1,Wang Ying1,Zhang Jie1ORCID

Affiliation:

1. Jiamusi University, Jiamusi, China

Abstract

In this study, carboxylated carbon nanotube (CNT)-loaded curcumin (CUR) was blended into calcium phosphate cement (CPC) owing to the poor mechanical properties and single function of CPC as a bone-filling material, and CNT-CUR-CPC with improved strength and antitumor properties was obtained. The failure strength, hydrophilicity, in vitro bioactivity, bacteriostatic activity, antitumor activity, and cell safety of CNT-CUR-CPC were evaluated. The experimental results indicated that the failure strength of CNT-CUR-CPC increased from 25.05 to 45.05 MPa ( p < 0.001) and its contact angle decreased from 20.37° to 15.27° ( p < 0.001) after the CNT-CUR complex was added into CPC at the rate of 5 wt% and blended. Following soaking in simulated body fluid (m-SBF), the main components of CNT-CUR-CPC were hydroxyapatite (HA) and carbonate hydroxyapatite (HCA). The incorporation of CNT-CUR was beneficial for the deposition of PO43− and CO32−, and it promoted the crystallization of HA and HCA. For CNT-CUR-CPC, the inhibition zone diameter on Staphylococcus aureus was 10.2 ± 1.02 mm ( p < 0.001) and it exhibited moderate sensitivity, whereas the inhibition zone diameter on Escherichia coli was 8.3 ± 0.23 mm ( p < 0.001) and it exhibited low sensitivity. When compared with the CPC, the cell proliferation rate (RGR %) of the CNT-CUR-CPC decreased by 7.73% ( p > 0.05) at 24 h, 17.89% ( p < 0.05) at 48 h, and 24.43% ( p < 0.001) at 72 h when MG63 cells were cultured on it. In particular, after the MG63 cells were cultured with the CNT-CUR-CPC for 48 h, the number of newly proliferating MG63 cells was significantly reduced, and their growth and adhesion on the surface of the CNT-CUR-CPC were inhibited when compared with the CPC. When 3T3-E1 cells were exposed to the m-SBF immersion solution of CNT-CUR-CPC, the cell proliferation rate (RGR %) was ≥80% ( p > 0.05) and the cytotoxicity grade was 0–1. The 3T3-E1 cells were cultured with the m-SBF soaking solution of CNT-CUR-CPC for 24 h, and no significant changes in cell morphology or cytotoxicity were observed. After the 3T3-E1 cells were cultured on CNT-CUR-CPC for 48 h, they could stick to and grow on its surface without adverse reactions. CNT-CUR-CPC had a hemolysis rate of 4.3% ( p > 0.05) and did not result in hemolysis and hemagglutination. The obtained CNT-CUR-CPC scaffold material exhibited effective antibacterial activity and cell safety, and could achieve a certain antitumor effect, which has a wide application potential in bone tissue engineering.

Funder

Heilongjiang Provincial Natural Science Foundation of China

2022 Annual National Fund Cultivation Project of Jiamusi University

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3