Cerebral aneurysm rupture status classification using statistical and machine learning methods

Author:

Amigo Nicolás1ORCID,Valencia Alvaro2,Wu Wei34,Patnaik Sourav35ORCID,Finol Ender3ORCID

Affiliation:

1. Escuela de Data Science, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile

2. Departamento de Ingeniera Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

3. Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA

4. Cardiovascular Division, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA

5. Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA

Abstract

Morphological characterization and fluid dynamics simulations were carried out to classify the rupture status of 71 (36 unruptured, 35 ruptured) patient specific cerebral aneurysms using a machine learning approach together with statistical techniques. Eleven morphological and six hemodynamic parameters were evaluated individually and collectively for significance as rupture status predictors. The performance of each parameter was inspected using hypothesis testing, accuracy, confusion matrix, and the area under the receiver operating characteristic curve. Overall, the size ratio exhibited the best performance, followed by the diastolic wall shear stress, and systolic wall shear stress. The prediction capability of all 17 parameters together was evaluated using eight different machine learning algorithms. The logistic regression achieved the highest accuracy (0.75), whereas the random forest had the highest area under curve value among all the classifiers (0.82), surpassing the performance exhibited by the size ratio. Hence, we propose the random forest model as a tool that can help improve the rupture status prediction of cerebral aneurysms.

Funder

National Institutes of Health

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3