Modeling contact forces during human-robot interactions for performing activities of daily living

Author:

Bilyea Aubrianna JN1,French Steven H1,Abdullah Hussein A1ORCID

Affiliation:

1. Robotics Institute, School of Engineering, University of Guelph, Guelph, ON, Canada

Abstract

This study aims to characterize contact forces between humans and tools during activities of daily living (ADL) to provide information to a personal care robot. The study was conducted on non-impaired subjects to capture various static and dynamic force levels when making contact with three different robotic tools, each designed to perform an ADL task: hair brushing, face wiping, and face shaving. The static trial of the study involved 21 participants. Forces were collected at fixed locations for each task and used to develop models for each participant. Extraction of the maximum force levels was performed for both the maximum and desired levels of force. The dynamic trial involved 24 individuals. Participants were asked to maintain a comfortable level of force for the duration of their contact with the tool as the robot moved along its path to perform the ADL task. For the static and dynamic trials, higher forces were observed during hair brushing compared to the other two tasks. It was observed that the hair brushing task force at a specific contact point has an overall maximum of 55.66 N, while the maximum forces detected in the face wiping and face shaving tasks were 36.40 and 11.11 N, respectively. The forces collected were analyzed, and no trends were found relating the contact forces to the gender, height, or weight of the subjects. Based on the analysis of the results, recommendations have been made to enhance the force safety limits for the personal care robot working environment.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference19 articles.

1. Measuring the Activities of Daily Living: Comparisons Across National Surveys

2. Active robot-assisted feeding with a general-purpose mobile manipulator: Design, evaluation, and lessons learned

3. Lopes P, Lavoie R, Faldu R, et al. Eye - Controlled Robotic Feeding Arm Technology (iCRAFT), 2011, pp. 1–24. [Online], http://www.ece.neu.edu/personal/meleis/icraft.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3