Orthodontic force prediction model of T-loop closing spring based on dynamic resistance model

Author:

Jiang Jingang12ORCID,Chen Houjun1,Huang Zhiyuan1,Ma Xuefeng1,Zhang Yongde12,Liu Yi3

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China

2. Robotics & ITS Engineering Research Center, Harbin University of Science and Technology, Harbin, China

3. School of Stomatology, Peking University, Beijing, China

Abstract

Malocclusion has been seriously endangering human oral function. The most effective and mature therapy is orthodontic treatment. But the relationship between the shape of the T-loop and the orthodontic force is unclear, and the precise mathematical model has not been established. In this article, the dynamic orthodontic force prediction model of the T-loop was established by analyzing the treatment process of the T-loop. The model was based on the dynamic resistance model of waxy dental jaw, the theory of beam deformation, and the deformation characteristics of the T-loop. In the experimental process, 11 kinds of orthodontic archwires were used as experimental samples, including 2 kinds of common archwire materials, 7 kinds of cross-sectional sizes, and 10 kinds of clearance distances. The T-loop was put into the extraction space and immersed in 75°C constant temperature water for 2 min. And the experimental data were measured and collected by the dynamic force measuring device. The experimental results show that the cross-sectional size and the clearance distance are positively correlated with the orthodontic force. The influence of the clearance distance on the orthodontic force is greater than that of the cross-section size. The deviation rates between the experimental values of orthodontic force and the theoretical values are between 1.10% and 9.09%, which verifies the accuracy of the dynamic orthodontic force prediction model. The model can predict the orthodontic force, improve the treatment effect, shorten the treatment cycle, and provide reference and guidance for orthodontists to carry out orthodontic treatment safely and effectively.

Funder

China Postdoctoral Science Foundation Funded Project

Fundamental Research Foundation for Universities of Heilongjiang Province

China Postdoctoral Science Foundation Special Funded Project

Heilongjiang Postdoctoral Science Foundation Funded Project

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Heilongjiang Postdoctoral Science Foundation Special Funded Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orthodontic force/torque modeling and experiment of Kitchon root‐controlled auxiliary archwire;International Journal for Numerical Methods in Biomedical Engineering;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3