Detecting early-stage Parkinson’s disease from gait data

Author:

Nair Parvathy123ORCID,Shojaei Baghini Maryam2,Pendharkar Gita3,Chung Hoam3ORCID

Affiliation:

1. IITB-Monash Research Academy, Mumbai, Maharashtra, India

2. IIT Bombay, Mumbai, Maharashtra, India

3. Monash University, Clayton, VIC, Australia

Abstract

Parkinson’s disease is a chronic and progressive neurodegenerative disorder with an estimated 10 million people worldwide living with PD. Since early signs are benign, many patients go undiagnosed until the symptoms get severe and the treatment becomes more difficult. The symptoms start intermittently and gradually become continuous as the disease progresses. In order to detect and classify these minute differences between gaits in early PD patients, we propose to use dynamic time warping (DTW). For a given set of gait data from a patient, the DTW algorithm computes the difference between any two gait cycles in the form of a warping path, which reveals small time differences between gait cycles. Once the time-warping information between all possible pairs of gait cycles is used as the main source of gait features, K-means clustering is used to extract the final features. These final features are fed to a simple logistic regression to easily and successfully detect early PD symptoms, which was reported as challenging using conventional statistical features. In addition, the use of DTW ensures that the obtained results are not affected by the differences in the style and speed of walking of a subject. Our approach is validated for the gait data from 83 subjects at early stages of PD, 10 subjects at moderate stages of PD, and 73 controls using the Leave-One-Out and N-fold cross-validation techniques, with a detection accuracy of over 98%. The high classification accuracy validated from a large data set suggests that these new features from DTW can be effectively used to help clinicians diagnose the disease at the earliest. Even though PD is not completely curable, early diagnosis would help clinicians to start the treatment from the beginning thereby reducing the intensity of symptoms at later stages.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3