Influence of outer geometry on primary stability for uncemented acetabular shells in developmental dysplasia of the hip

Author:

Yoshida Kazuhiro1ORCID,Fukushima Kensuke2,Sakai Rina1,Uchiyama Katsufumi2,Takahira Naonobu23,Ujihira Masanobu1

Affiliation:

1. Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan

2. Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan

3. Department of Rehabilitation, Kitasato University, Sagamihara, Kanagawa, Japan

Abstract

Excellent primary stability of uncemented acetabular shells is essential to obtain successful clinical outcomes. However, in the case of developmental dysplasia of the hip (DDH), aseptic loosening may be induced by instability due to a decrease of the contact area between the acetabular shell and host bone. The aim of this study was to assess the primary stability of two commercially-available acetabular shells, hemispherical and hemielliptical, in normal and DDH models. Synthetic bone was reamed using appropriate surgical reamers for each reaming condition (normal acetabular model). The normal acetabular model was also cut diagonally at 40° to create a dysplasia model. Stability of the acetabular components was evaluated by the lever-out test. In the normal acetabular model conditions, the maximum primary stabilities of hemispherical and hemielliptical shells were observed in the 1-mm under- and 1-mm over-reamed conditions, respectively, and the resulting stabilities were comparable. The lateral defect in the dysplasia model had an adverse effect on the primary stabilities of the two designs. The lever-out moment of the hemielliptical acetabular shell was 1.4 times greater than that of the hemispherical acetabular shell in the dysplasia model. The hemispherical shell is useful for the normal acetabular condition, and the hemielliptical shell for the severe dysplasia condition, in the context of primary stability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3