Study on damage of the macrostructure of the cochlea under the impact load

Author:

Wang Jiakun12,Liang Junyi3,Gao Lei12,Yao Wenjuan12ORCID

Affiliation:

1. School of Mechanics and Engineering Science, Shanghai University, Shanghai, China

2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China

3. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA

Abstract

Due to the tiny and delicate structure of the cochlea, the auditory system is the most sensitive to explosion impact damage. After being damaged by the explosion impact wave, it usually causes long-term deafness, tinnitus, and other symptoms. To better understand the influence of impact load on the cochlea and basilar membrane (BM), a three-dimensional (3D) fluid-solid coupling finite element model was developed. This model accurately reflects the actual spatial spiral shape of the human cochlea, as well as the lymph environment and biological materials. Based on verifying the reliability of the model, the curve of impact load-amplitude response was obtained, and damage of impact load on the cochlea and the key macrostructure-BM was analyzed. The results indicate that impact wave at middle frequency has widest influence on the cochlea. Furthermore, impact loading causes tears in the BM and destroys the cochlear frequency selectivity.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3