Quantifying the lubricity of mechanically tough polyvinyl alcohol hydrogels for cartilage repair

Author:

Ling Doris1,Bodugoz-Senturk Hatice12,Nanda Salil3,Braithwaite Gavin4,Muratoglu Orhun K12

Affiliation:

1. Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA

2. Harvard Medical School, Boston, MA, USA

3. Cornell University, Ithaca, NY, USA

4. Cambridge Polymer Group, Boston, MA, USA

Abstract

Polyvinyl alcohol hydrogels are biocompatible and can be used as synthetic articular cartilage. Their mechanical characteristics can be tailored by various techniques such as annealing or blending with other hydrophilic polymers. In this study, we quantified the coefficient of friction of various candidate polyvinyl alcohol hydrogels against cobalt–chrome alloy or swine cartilage using a new rheometer-based method. We investigated the coefficient of friction of polyvinyl alcohol–only hydrogels and blends with polyethylene glycol, polyacrylic acid, and polyacrylamide against swine cartilage and polished cobalt–chrome surfaces. The addition of the functional groups to polyvinyl alcohol, such as acrylamide (semi-interpenetrating network) and acrylic acid (blend), significantly reduced the coefficient of friction. The coefficient of friction of the polyvinyl alcohol–only hydrogel was measured as 0.4 ± 0.03 against cobalt–chrome alloy, and 0.09 ± 0.004 against cartilage, while those measurements for the polyvinyl alcohol–polyacrylic acid blends and polyvinyl alcohol–polyacrylamide semi-interpenetrating network were 0.07 ± 0.01 and 0.1 ± 0.003 against cobalt–chrome alloy, and 0.03 ± 0.001 and 0.02 ± 0.001 against cartilage, respectively. There was no significant or minimal difference in the coefficient of friction between samples from different regions of the knee, or animals, or when the cartilage samples were frozen for 1 day or 2 days before testing. However, changing lubricant from deionized water to ionic media, for example, saline or simulated body fluid, increased the coefficient of friction significantly.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3