Optimization of activity-driven event detection for long-term ambulatory urodynamics

Author:

Zareen Farhath1,Elazab Mohammed2,Hanzlicek Brett3,Doelman Adam24,Bourbeau Dennis35ORCID,Majerus Steve JA36,Damaser Margot S23,Karam Robert1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA

2. Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

3. Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA

4. International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada

5. Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, USA

6. Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA

Abstract

Lower urinary tract dysfunction (LUTD) is a debilitating condition that affects millions of individuals worldwide, greatly diminishing their quality of life. The use of wireless, catheter-free implantable devices for long-term ambulatory bladder monitoring, combined with a single-sensor system capable of detecting various bladder events, has the potential to significantly enhance the diagnosis and treatment of LUTD. However, these systems produce large amounts of bladder data that may contain physiological noise in the pressure signals caused by motion artifacts and sudden movements, such as coughing or laughing, potentially leading to false positives during bladder event classification and inaccurate diagnosis/treatment. Integration of activity recognition (AR) can improve classification accuracy, provide context regarding patient activity, and detect motion artifacts by identifying contractions that may result from patient movement. This work investigates the utility of including data from inertial measurement units (IMUs) in the classification pipeline, and considers various digital signal processing (DSP) and machine learning (ML) techniques for optimization and activity classification. In a case study, we analyze simultaneous bladder pressure and IMU data collected from an ambulating female Yucatan minipig. We identified 10 important, yet relatively inexpensive to compute signal features, with which we achieve an average 91.5% activity classification accuracy. Moreover, when classified activities are included in the bladder event analysis pipeline, we observe an improvement in classification accuracy, from 81% to 89.0%. These results suggest that certain IMU features can improve bladder event classification accuracy with low computational overhead. Clinical Relevance: This work establishes that activity recognition may be used in conjunction with single-channel bladder event detection systems to distinguish between contractions and motion artifacts for reducing the incorrect classification of bladder events. This is relevant for emerging sensors that measure intravesical pressure alone or for data analysis of bladder pressure in ambulatory subjects that contain significant abdominal pressure artifacts.

Funder

National Institutes of Health

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3