A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries

Author:

Karimi Alireza12,Navidbakhsh Mahdi1,Faghihi Shahab2,Shojaei Ahmad3,Hassani Kamran4

Affiliation:

1. Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

3. Department of Ophthalmology, Baqiyatallah University of Medical Sciences, Tehran, Iran

4. Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Atherosclerosis is the most common arterial disease. It has been shown that stresses that are induced during blood circulation can cause plaque rupture and, in turn, lead to thrombosis and stroke. In this study, finite element method is used to predict plaque vulnerability based on peak plaque stress using human samples. A total of 23 healthy and atherosclerotic human coronary arteries of 14 healthy and 9 atherosclerotic patients are excised within 5 h postmortem. The samples are mounted on an uniaxial tensile test machine, and the obtained mechanical properties are used in two-dimensional and three-dimensional finite element models. The results including the Neo–Hookean hyperelastic coefficients of the samples as well as peak plaque stresses are analyzed. The results indicate that the atherosclerotic human coronary arteries have significantly ( p < 0.05) higher stiffness compared with the healthy ones. The hypocellular plaque also has the highest stress values and, as a result, is most likely (vulnerable) to rupture, while the calcified type has the lowest stress values and, consequently, is expected to remain stable. The results could be used in the plaque vulnerability anticipation and have clinical implications in interventions and surgeries, including balloon angioplasty, bypass, and stenting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3