Evaluation of bone excision effects on a human skull model – I: Mechanical testing and digital image correlation

Author:

Franceskides Constantinos1,Leger Thibault2,Horsfall Ian3,Tozzi Gianluca4,Gibson Michael5,Zioupos Peter1ORCID

Affiliation:

1. Musculoskeletal and Medicolegal Research Group, Cranfield Forensic Institute, Cranfield University, Swindon, UK

2. Materials Science, University of Paris-Sud, Orsay, France

3. Centre for Defence Engineering, Cranfield University, Swindon, UK

4. Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK

5. Centre for Simulation and Analytics, Cranfield University, Swindon, UK

Abstract

The mechanisms of skull impact loading may change following surgical interventions such as the removal of bone lesions, but little is known about the consequences in the event of subsequent head trauma. We, therefore, prepared acrylonitrile butadiene styrene human skull models based on clinical computed tomography skull data using a three-dimensional printer. Six replicate physical skull models were tested, three with bone excisions and three without. A drop tower was used to simulate the impact sustained by falling backwards onto the occipital lobe region. The impacts were recorded with a high-speed camera, and the occipital strain response was determined by digital image correlation. Although the hole affected neither the magnitude nor the sequence of the fracture pattern, the digital image correlation analysis highlighted an increase in strain around the excised area (0.45%–16.4% of the principal strain). Our approach provides a novel method that could improve the quality of life for patients on many fronts, including protection against trauma, surgical advice, post-operative care, advice in litigation cases, as well as facilitating general biomechanical research in the area of trauma injuries.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3