Evaluating additive manufacturing for the production of custom head supports: A comparison against a commercial head support under static loading conditions

Author:

Howard Jonathan D1ORCID,Eggbeer Dominic2,Dorrington Peter3,Korkees Feras3,Tasker Lorna H1

Affiliation:

1. Rehabilitation Engineering Unit, Specialist Rehabilitation Centre, Medical Physics & Clinical Engineering, Morriston Hospital, Swansea, UK

2. PDR, Cardiff Metropolitan University, Cardiff, UK

3. College of Engineering, Swansea University, Swansea, UK

Abstract

The provision of wheelchair seating accessories, such as head supports, is often limited to the use of commercial products. Additive manufacturing has the potential to produce custom seating components, but there are very few examples of published work. This article reports a method of utilising 3D scanning, computer-aided design and additive manufacturing for the fabrication of a custom head support for a wheelchair. Three custom head supports, of the same shape, were manufactured in nylon using a continuous filament fabrication machine. The custom head supports were tested against an equivalent and widely used commercial head support using ISO 16840-3:2014. The head supports were statically loaded in two configurations, one modelling a posterior force on the inner rear surface and the other modelling a lateral force on the side. The posterior force resulted in failure of the supporting bracketry before the custom head support. A similar magnitude of forces was applied laterally for the custom and commercial head support. When the load was removed, the custom recovered to its original shape while the commercial sustained plastic deformation. The addition of a joint in the head support increased the maximum displacement, 128.6 mm compared to 71.7 mm, and the use of carbon fibre resulted in the head support sustaining a higher force at larger displacements, increase in 30 N. Based on the deformation and recovery characteristics, the results indicate that additive manufacturing could be an appropriate method to produce lighter weight, highly customised, cost-effective and safe head supports for wheelchair users.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3