Interstitial lung disease detection using template matching combined sparse coding and blended multi class support vector machine

Author:

Helen Sulochana C1ORCID,Praylin Selva Blessy SA2

Affiliation:

1. St. Xaviers Catholic College of Engineering, Chunkankadai, Tamil Nadu, India

2. Bethlahem Institute of Engineering, Ulaganvillai, Tamil Nadu, India

Abstract

Interstitial lung disease (ILD), representing a collection of disorders, is considered to be the deadliest one, which increases the mortality rate of humans. In this paper, an automated scheme for detection and classification of ILD patterns is presented, which eliminates low inter-class feature variation and high intra-class feature variation in patterns, caused by translation and illumination effects. A novel and efficient feature extraction method named Template-Matching Combined Sparse Coding (TMCSC) is proposed, which extracts features invariant to translation and illumination effects, from defined regions of interest (ROI) within lung parenchyma. The translated image patch is compared with all possible templates of the image using template matching process. The corresponding sparse matrix for the set of translated image patches and their nearest template is obtained by minimizing the objective function of the similarity matrix of translated image patch and the template. A novel Blended-Multi Class Support Vector Machine (B-MCSVM) is designed for tackling high-intra class feature variation problems, which provides improved classification accuracy. Region of interests (ROIs) of five lung tissue patterns (healthy, emphysema, ground glass, micronodule, and fibrosis) selected from an internal multimedia database that contains high-resolution computed tomography (HRCT) image series are identified and utilized in this work. Performance of the proposed scheme outperforms most of the state-of-art multi-class classification algorithms.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3