Number concentration dependence of ultrasonic disruption ratio of diameter-sorted microcapsules

Author:

Kanashima Junsyou1,Sugita Naohiro2ORCID,Shinshi Tadahiko2

Affiliation:

1. Department of Mechanical Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan

2. Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan

Abstract

The use of ultrasound to destroy microcapsules in microbubble-assisted drug delivery systems (DDS) is of great interest. In the present study, the disruption ratios of capsule clusters were measured by observing and experimentally analyzing microcapsules with polymer shells undergoing disruption by ultrasound. The microcapsules were dispersed in a planar microchamber filled with a gelatin gel and sonicated using 1 MHz focused ultrasound. Different capsule populations were obtained using a filtration technique to modify and control the capsule sizes. The disruption ratio as a function of the concentration of capsules was obtained through image processing of the recorded photomicrographs. We found that the disruption ratio for each population exponentially decreases as the particle number concentration (PNC) increases. The maximum disruption ratio of the diameter-sorted capsules was larger than that of polydispersed capsules. Particularly, for resonant capsule populations, the ratio was more than twice that of polydispersed capsules. Furthermore, the maximum disruption ratio occurred at higher concentrations as the mean particle diameter of the capsule cluster decreased.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3