Biomechanical performance of the cemented acetabular cup with combined effects of bone quality, implant material combinations and bodyweight

Author:

Kumar Ajay1ORCID,Mondal Subrata2,Ghosh Rajesh1ORCID

Affiliation:

1. School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India

2. School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland

Abstract

The objective of this study is to understand the combined effects of bone quality, implant materials and bodyweight on the biomechanical performance of cemented acetabular cup. Additionally, the performance of the cemented acetabular cup was evaluated for obesity cases or obese people. A total of 84 FE models (based on CT data) were developed based on combinations of three different cancellous bone material distributions to represent bone quality, four different implant material combinations and seven different bodyweights. The biomechanical performance of the acetabular cup was evaluated based on bone stress (both cortical and cancellous bone), cement mantle stress, micromotion and contact pressure between the acetabular cup and femoral head. Cortical bone stress, cancellous bone stress, cement stress, the contact pressure between implants and micromotion between implants are affected by different bone quality, implant material combinations and bodyweights. An increase in bodyweight would increase the cortical bone stress, cancellous bone stress, cement stress, contact pressure between implants and micromotion between implants. However, bodyweight affects the cortical and cancellous bone stress more (stiff rise of the bone stresses; nonlinear relation) as compared to other output parameters (mostly linear relation). Comparing cortical and cancellous bone stress, the stress versus bodyweight curve is much stiffer (stiff rise in the curve) for cortical bone than cancellous bone and that even further increases as bone quality decreases. Especially considering obesity cases or obese people (very high bodyweight), the performance of the cemented acetabular component is poor. Graphical abstract [Formula: see text]

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3