Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach

Author:

Omiotek Zbigniew1

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland

Abstract

The purpose of the study was to construct an efficient classifier that, along with a given reduced set of discriminant features, could be used as a part of the computer system in automatic identification and classification of ultrasound images of the thyroid gland, which is aimed to detect cases affected by Hashimoto’s thyroiditis. A total of 10 supervised learning techniques and a majority vote for the combined classifier were used. Two models were proposed as a result of the classifier’s construction. The first one is based on the K-nearest neighbours method (for K = 7). It uses three discriminant features and affords sensitivity equal to 88.1%, specificity of 66.7% and classification error at a level of 21.8%. The second model is a combined classifier, which was constructed using three-component classifiers. They are based on the K-nearest neighbours method (for K = 7), linear discriminant analysis and a boosting algorithm. The combined classifier is based on 48 discriminant features. It allows to achieve the classification sensitivity equal to 88.1%, specificity of 69.4% and classification error at a level of 20.5%. The combined classifier allows to improve the classification quality compared to the single model. The models, built as a part of the automatic computer system, may support the physician, especially in first-contact hospitals, in diagnosis of cases that are difficult to recognise based on ultrasound images. The high sensitivity of constructed classification models indicates high detection accuracy of the sick cases, and this is beneficial to the patients from a medical point of view.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3