A miniature tension sensor to measure surgical suture tension of deformable musculoskeletal tissues during joint motion

Author:

Kiriyama Yoshimori1,Matsumoto Hideo2,Toyama Yoshiaki3,Nagura Takeo3

Affiliation:

1. Department of Clinical Biomechanics, Keio University, Tokyo, Japan

2. Institute for Integrated Sports Medicine, Keio University, Tokyo, Japan

3. Department of Orthopaedic Surgery, Keio University, Tokyo, Japan

Abstract

The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3