Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones

Author:

Singh Ravinder Pal1,Pandey Pulak Mohan1ORCID,Behera Chittaranjan2,Mridha Asit Ranjan3ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India

2. Department of Forensic Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India

3. Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India

Abstract

Efficacy and outcomes of osteosynthesis depend on various factors including types of injury and repair, host factors, characteristics of implant materials and type of implantation. One of the most important host factors appears to be the extent of bone damage due to the mechanical force and thermal injury which are produced at cutting site during bone drilling. The temperature above the critical temperature (47 °C) produces thermal osteonecrosis in the bones. In the present work, experimental investigations were performed to determine the effect of drilling parameters (rotational speed, feed rate and drill diameter) and techniques (conventional surgical bone drilling and rotary ultrasonic bone drilling) on cutting force and temperature generated during bone drilling. The drilling experiments were performed by a newly developed bone drilling machine on different types of human bones (femur, tibia and fibula) having different biological structure and mechanical behaviour. The bone samples were procured from male cadavers with the age of second to fourth decades. The results revealed that there was a significant difference ( p < 0.05) in cutting force and temperature rise for rotary ultrasonic bone drilling and conventional surgical bone drilling. The cutting force obtained in rotary ultrasonic bone drilling was 30%–40%, whereas temperature generated was 50%–55% lesser than conventional surgical bone drilling process for drilling in all types of bones. It was also found that the cutting force increased with increasing feed rate, drill diameter and decrease in rotational speed, whereas increasing rotational speed, drill diameter and feed rate resulted in higher heat generation during bone drilling. Both the techniques revealed that the axial cutting force and the temperature rise were significantly higher in femur and tibia compared with the fibula for all combinations of process parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3