Accuracy and precision of cardiac output estimation by an automated, brachial cuff-based oscillometric device in patients with shock

Author:

Papaioannou Theodore G1ORCID,Xanthis Dimitrios2,Argyris Antonis3,Vernikos Pavlos2,Mastakoura Georgia2,Samara Stamatia3,Floros Ioannis T2,Protogerou Athanase D3,Tousoulis Dimitrios2

Affiliation:

1. Biomedical Engineering Unit, First Department of Cardiology, Medical School, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece

2. Intensive Care Unit, Laiko General Hospital, Athens, Greece

3. Cardiovascular Prevention and Research Unit, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Abstract

Non-invasive monitoring of cardiac output is a technological and clinical challenge, especially for critically ill, surgically operated, or intensive care unit patients. A brachial cuff-based, automated, oscillometric device used for blood pressure and arterial stiffness ambulatory monitoring (Mobil-O-Graph) provides a non-invasive estimation of cardiac output values simultaneously with regular blood pressure measurement. The aim of the study was to evaluate the feasibility of this apparatus to estimate cardiac output in intensive care unit patients and to compare the non-invasive estimated cardiac output values with the respective gold standard method of thermodilution during pulmonary artery catheterization. Repeated sequential measurements of cardiac output were performed, in random order, by thermodilution (reference) and Mobil-O-Graph (test), in 24 patients hospitalized at intensive care unit. Reproducibility and accuracy of the test device were evaluated by Bland–Altman analysis, intraclass correlation coefficient, and percentage error. Mobil-O-Graph underestimated significantly the cardiac output by −1.12 ± 1.38 L/min ( p < 0.01) compared to thermodilution. However, intraclass correlation coefficient was >0.7 indicating a fair agreement between the test and the reference methods, while percentage error was approximately 39% which is considered to be within the acceptable limits. Cardiac output measurements were reproducible by both Mobil-O-Graph (intraclass correlation coefficient = 0.73 and percentage error = 27.9%) and thermodilution (intraclass correlation coefficient = 0.91 and percentage error = 26.7%). We showed for the first time that cardiac output estimation in intensive care unit patients using a non-invasive, automated, oscillometric, cuff-based apparatus is reproducible (by analyzing two repeated cardiac output measurements), exhibiting similar precision to thermodilution. However, the accuracy of Mobil-O-Graph (error compared to thermodilution) could be considered fairly acceptable. Future studies remain to further examine the reliability of this technology in monitoring cardiac output or stroke volume acute changes which is a more clinically relevant objective.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3