Biomechanical comparison of transdiscal fixation and posterior fixation with and without transforaminal lumbar interbody fusion in the treatment of L5–S1 lumbosacral joint

Author:

Özalp Hakan1,Özkaya Mustafa2,Yaman Onur3,Demir Teyfik4

Affiliation:

1. Department of Neurosurgery, Mersin University, Mersin, Turkey

2. Department of Mechanical Engineering, KTO Karatay University, Konya, Turkey

3. Department of Neurosurgery, Koç University, İstanbul, Turkey

4. Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey

Abstract

Transdiscal screw fixation is generally performed in the treatment of high-grade L5–S1 spondylolisthesis. The main thought of the study is that the biomechanical performances of the transdiscal pedicle screw fixation can be identical to standard posterior pedicle screw fixations with or without transforaminal lumbar interbody fusion cage insertion. Lumbosacral portions and pelvises of 45 healthy lambs’ vertebrae were dissected. Animal cadavers were randomly and equally divided into three groups for instrumentation. Three fixation systems, L5–S1 posterior pedicle screw fixation, L5–S1 posterior pedicle screw fixation with transforaminal lumbar interbody fusion cage insertion, and L5–S1 transdiscal pedicle screw fixation, were generated. Axial compression, flexion, and torsion tests were conducted on test samples of each system. In axial compression, L5–S1 transdiscal fixation was less stiff than L5–S1 posterior pedicle screw fixation with transforaminal lumbar interbody fusion cage insertion. There were no significant differences between groups in flexion. Furthermore, L5–S1 posterior fixation was stiffest under torsional loads. When axial compression and flexion loads are taken into consideration, transdiscal fixation can be alternatively used instead of posterior pedicle screw fixation in the treatment of L5–S1 spondylolisthesis because it satisfies enough stability. However, in torsion, posterior fixation is shown as a better option due to its higher stiffness.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3