Applicability of an entry flow model of the brachial artery for flow models of the hemodialysis fistula

Author:

Bastola Sulav1,Paulson William D2,Jones Steven A1

Affiliation:

1. Biomedical Engineering Program, Louisiana Tech University, Ruston, LA, USA

2. Division of Nephrology, Augusta University Medical Center, Augusta, GA, USA

Abstract

The native arteriovenous fistula creates a shunt that provides the high blood flow that is needed for dialysis. Lumped parameter hemodynamic models of the arteriovenous fistula can be used to predict shear stresses and pressure losses and can be applied to help understand unsolved problems such as the high rate of arteriovenous fistula maturation failure. These models combine together flow components, such as arteries, stenosis, anastomoses, arterial compliance, and blood inertia, and each component must be modeled with an appropriate pressure–flow relationship. Poiseuille flow is generally assumed for straight vessels, but the unique high flow rates within the brachial artery of an arteriovenous fistula are expected to induce entry flow effects that are neglected in this model. To estimate the importance of these effects, brachial artery flow was modeled in a low-resistance network, such as the one that occurs when an arteriovenous fistula is constructed, through the lumped parameter model, and the predicted flow rates and pressures were compared to those predicted by computational fluid dynamics. When Poiseuille flow was assumed, the flow rate from the lumped parameter model was consistently larger than that from computational fluid dynamics, with a cycle-averaged error of 36.8%. When an entry flow model (Shah) was assumed, the lumped parameter–based flow was 6% lower than the computational fluid dynamics model at the peak of the flow waveform, and the cycle-averaged error was reduced to 7.8%. Thus, in a low-resistance (high flow) arteriovenous fistula circuit, an entry flow model can account for steeper near-wall velocity gradients. This result can provide a useful guide for designing engineering models of the arteriovenous fistula.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference26 articles.

1. United States Renal Data System (USRDS). Annual data report: end-stage renal disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2016, 2: 261–300.

2. Prescribing and monitoring hemodialysis in a 3-4 × /week setting

3. Fresenius Medical Care North America (FMCNA). 2014 annual medical quality report (enhanced edition), 2014, pp.1–256. Fresenius Medical Care AG & Co. KGaA.

4. Why don't fistulas mature?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3