Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study

Author:

Wu Tingting1ORCID,Lin Hao1,Zhu Yuxin1,Huang Penghui1,Lin Frank2,Chen Chen12,Hsu Po-Lin1

Affiliation:

1. Artificial Organ Technology Laboratory, Soochow University, Suzhou, China

2. CH Biomedical, Inc., Suzhou, China

Abstract

Long-term using continuous flow ventricular assist devices could trigger complications associated with diminished pulsatility, such as valve insufficiency and gastrointestinal bleeding. One feasible solution is to produce pulsatile flow assist with speed regulation in continuous flow ventricular assist devices. A third-generation blood pump with pulsatile operation control algorithm was first characterized alone under pulsatile mode at various speeds, amplitudes, and waveforms. The pump was then incorporated in a Mock circulation system to evaluate in vitro hemodynamic effects when using continuous and different pulsatile operations. Pulsatility was evaluated by surplus hemodynamic energy. Results showed that pulsatile operations provided sufficient hemodynamic assistance and increased pulsatility of the circulatory system (53% increment), the mean aortic pressure (65% increment), and cardiac output (27% increment). The pulsatility of the system under pulsatile operation support was increased 147% compared with continuous operation support. The hemodynamic performance of pulsatile operations is susceptible to phase shifts, which could be a tacking angle for physiological control optimization. This study found third-generation blood pumps using different pulsatile operations for ventricular assistance promising.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3