In vitro study of red blood cell and VWF damage in mechanical circulatory support devices based on blood-shearing platform

Author:

Mei Xu1ORCID,Lu Bin1,Wu Peng1ORCID,Zhang Liudi1

Affiliation:

1. Artificial Organ Technology Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China

Abstract

Blood damage induced by mechanical circulatory support devices (MCSDs) remains a significant challenge to optimal clinical care. Although researchers have been conducting in vitro studies, the major determinant of blood damage is still unclear. An optimized capillary tube blood-shearing platform with custom designed parts was constructed to investigate the influence of two flow-dependent parameters (shear stress and exposure time) on the shear-induced damage of red blood cells and von Willebrand factor (VWF). Blood samples under different high shear stress and instantaneous exposure time were obtained by changing the flow rate and the length of capillary tube. Plasma free hemoglobin assay and immunoblotting of VWF were then performed on the sheared blood samples. The quantitative correlation between the hemolysis index and the two flow-dependent parameters was found following the power law mathematical model under the flow condition with high shear stress and instantaneous exposure time. The degradation of high molecular weight VWF was not obvious under high shear stress factor. However, the degradation of high molecular weight VWF was found as the result of the accumulation over exposure time under non-physiological shear stress, which was consistent with the different mechanism of VWF damage comparing to red blood cell damage. Compared to peak shear stress, exposure time has a greater effect on both red blood cell and VWF damage. To improve the hemocompatibility of MCSDs, it is more important to avoid regions of slow blood flow with non-physiological shear stress under laminar flow conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Mobility Programme of the Sino-German Center

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3