Affiliation:
1. National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
2. Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
Abstract
Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head–brain. Using the proposed model, we have calculated the responses of the head–brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.
Subject
Mechanical Engineering,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献