Tibial post loading increases the risk of aseptic loosening of posterior-stabilized tibial prosthesis

Author:

Chen Zhenxian1ORCID,Han Jianian1,Zhang Jing1,Peng Yinghu2,Guo Lei1,Chen Shibin1,Jin Zhongmin345

Affiliation:

1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, Shaanxi, China

2. CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China

3. State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

4. Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK

5. Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China

Abstract

Aseptic loosening is the primary cause of failure following posterior-stabilized total knee arthroplasty. It is unclear whether tibial post loading of posterior-stabilized prosthesis increases the risk of aseptic loosening of the tibial prosthesis. The purpose of this study is to investigate the biomechanical effects of tibial post loading on the tibial prosthesis fixation interface during level walking, squatting, stair descent, and standing up-sitting down activities. In this paper, finite element models with and without post were established to compare the effects of tibial post loading on the von Mises stress of the proximal tibia, shear stress of the cement, and the bone-prosthesis interface micromotion during four physiological activities. The tibial post loading had an insignificant influence on tibial biomechanics and bone-prosthesis interface micromotion during leveling walking activity. However, compared to the insert without post condition, tibial post loading significantly increased the maximum tibial von Mises stress, the maximum shear stress in the medial of cement, and the bone-prosthesis interface peak micromotion by 912.84%, 612.77%, and 921.09%, respectively, at the moment of the maximum flexion angle for the stair descent activity, and 637.92%, 351.43%, and 519.13%, respectively, at the moment of the maximum flexion angle for the standing up-sitting down activity. Tibial post loading increased the risk of postoperative aseptic loosening of tibial prosthesis in patients with posterior-stabilized total knee arthroplasty, and it was recommended that the post-cam contact mechanism of posterior-stabilized prosthesis should be optimized to reduce the biomechanical impact of tibial post loading on tibial prosthesis fixation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3