Smart bioimpedance-controlled craniotomy: Concept and first experiments

Author:

Niesche Annegret1,Müller Meiko1,Ehreiser Fritz1,Teichmann Daniel2,Leonhardt Steffen2,Radermacher Klaus1

Affiliation:

1. Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany

2. Philips Chair for Medical Information Technology, RWTH Aachen University, Aachen, Germany

Abstract

Craniotomy is part of many neurosurgical interventions to create surgical access to intracranial structures. The procedure conventionally bears a high risk of unintended dural tears or damage of the soft tissue underneath the bone. A new synergistically controlled instrument has recently been introduced to address this problem by combining a soft tissue preserving saw with an automatic cutting depth control. Many approaches are known to obtain the information required on the local bone thickness. However, they suffer from unsatisfactory robustness against disturbances occurring during surgery and many approaches require additional intra- or preoperative steps in the workflow. This article presents first concepts for real-time cutting depth control based on in-process bioimpedance measurements. Furthermore, sensor integration into a synergistic surgical device incorporating a bidirectional oscillating saw is demonstrated and evaluated in first feasibility tests on a fresh bovine bone specimen. Results of bipolar measurements show that the transition of different layers of bicortical bone and bone breakthrough lead to characteristic impedance patterns that can be used for process control.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3